A New Lignan Glucoside from Lancea tibetica

Bao Ning SU, Cheng Shan YUAN and Zhong Jian JIA*
Department of Chemistry, National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000

Abstract

A new 7-9'-monoepoxy tetrahydrofuran type lignan glucoside with the cis-relationship of H-7 and H-8, named tibeticoside A 1, was isolated from the medicinal whole plants of Lancea tibetica. Its structure was elucidated by spectroscopic methods and chemical transformation.

Keywords: Lancea tibetica; scrophulariaceae; tibeticoside A.
L. tibetica Hook. f. et Thoms. is an important Tibetan medicine used for treatment of many diseases ${ }^{1}$. The lignan glycosides and triterpenes from this plant have been reported ${ }^{2,3}$ by Huidi Zhang et al. This paper describes the structure elucidation of a new lignan glucoside, named tibeticoside A 1.

Compound 1 was obtained as a white amorphous powder, $[\alpha]_{D}{ }^{20}-120{ }^{\text {c }} \mathrm{c} \quad 0.50$, MeOH), UV $\lambda_{\max }{ }^{\mathrm{MeOH}}(\log \epsilon): 207$ (4.52), 235 (3.34), 286 (3.32) nm. The IR spectrum (KBr) showed absorptions for hydroxyl $\left(3422-3461 \mathrm{~cm}^{-1}\right)$ and aromatic ring (1635, $1502 \mathrm{~cm}^{-1}$). The molecular formula of $\mathbf{1}$ was determined to be $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{12}$ on the basis of NMR spectral data and elemental analysis. ${ }^{1}$ HNMR spectrum of $\mathbf{1}$ showed the presence of aromatic rings at $\delta 6.73-6.87$, two methylenedioxy groups at $\delta 6.96(2 \mathrm{H}$, brs) and 6.97 $(2 \mathrm{H}, \mathrm{brs})$, two methines connected with oxygen at $\delta 5.05(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7)$ and $4.37(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=9.7 \mathrm{~Hz}, \mathrm{H}-7$ '), the anomeric proton of glucose at $\delta 4.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}) .{ }^{13} \mathrm{CNMR}$ and DEPT data (Table 1) of $\mathbf{1}$ showed the presence of four methines and two methylenes except two aromatic rings, two methylenedioxy groups and the signals of a glucose. On acid hydrolysis with HCl , compound $\mathbf{1}$ afforded glucose (identified by PC). From the above results, $\mathbf{1}$ seemed to be a $7-9^{\prime}$-monoepoxy tetrahydrofuran type lignan glucoside.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{CNMR}$ data of $\mathbf{1}$ were assigned on the basis of the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{HCOSY}$ and HMQC. Furthermore, the correlations of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY confirmed the structure skeleton given. In the HMBC spectrum of $\mathbf{1}$, the correlations of $\mathrm{H}-7$ ($\delta 5.05$) with C-8, C-9, C-9', C-2, C-6 and C-1; H-7’ ($\delta 4.37$) with C-8', C-2', C-6’ and C-1’; H-1 of Glu. ($\delta 4.24$) with $\mathrm{C}-9$, all of these correlations were in agreement with the structure.

Compound $\mathbf{1}$ has been acetylated to $\mathbf{1 a}$ by using acetic anhydride and pyridine (1:1). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{CNMR}$ spectra of 1a showed five acetyls. Furthermore, the chemical shift values of H-7' and H-8' of $\mathbf{1 a}$ appeared significantly downfield when comparison with $\mathbf{1}$, suggesting C-7' of $\mathbf{1}$ to be connected with a hydroxyl. The correlations of $\delta 4.96$ (H-7) with $2.36(\mathrm{H}-8)$ and $\delta 2.36(\mathrm{H}-8)$ with $2.92\left(\mathrm{H}-8{ }^{\prime}\right)$ in the NOESY spectrum of 1a indicated that H-7, H-8 and H-8' were cis-relationship. Thus, the structure of $\mathbf{1}$ has been determined.

Table1. ${ }^{13} \mathrm{CNMR}$ data of $1\left(\mathrm{DMSO}_{-}\right)$and $1 \mathrm{a}\left(\mathrm{CDCl}_{3}\right)(100 \mathrm{MHz}, \delta, \mathrm{ppm}$, TMS $)$

| C | $\mathbf{1}$ | $\mathbf{1 a}$ | C | $\mathbf{1}$ | $\mathbf{1 a}$ | C | 1 | 1a |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 138.3 | 133.6 | 1^{\prime} | 139.3 | 136.9 | Glu. 1 | 102.6 | 101.1 |
| 2 | 105.8 | 105.9 | 2^{\prime} | 106.2 | 106.8 | 2 | 73.5 | 71.9 |
| 3 | 147.1 | 147.8 | 3^{\prime} | 147.1 | 147.8 | 3 | 76.9 | 74.0 |
| 4 | 145.8 | 146.7 | 4^{\prime} | 146.2 | 147.5 | 4 | 69.9 | 68.3 |
| 5 | 107.7 | 108.0 | 5 | 107.8 | 108.2 | 5 | 76.6 | 72.7 |
| 6 | 118.0 | 118.6 | 6 | 119.0 | 120.6 | 6 | 61.0 | 61.7 |
| 7 | 82.5 | 83.4 | 7 | 70.2 | 71.2 | OCH $_{2} \mathrm{O}$ | 100.6 | $100.8,100.9$ |
| | | | | | | | 100.6 | |
| 8 | 47.4 | 48.9 | 8 | 48.3 | 45.6 | OCOMe $^{\prime}$ | | $169.1,169.3,169.5,170.3$, |
| | | | | | | | | 170.5 |
| 9 | 66.3 | 67.3 | 9 | 69.1 | 70.2 | | | $20.6,20.6,20.7,20.7,21.1$ |

Acknowledgments

This work was supported by the National Natural Science Foundation of China and the Foundation of the State Education Commission of China for Doctoral Program.

References

1. Jiangsu New Medical College, Chinese Medicine Dictionary, Shanghai People's Publishing House, China, 1977, 264.
2. H. D. Zhang, M. T. Wang, R. D. Zheng, S. J. Zhang, Y. Z. Cheng J. Lanzhou University 1987, 23, 156-158.
3. R. D. Zheng, M. T. Wang, H. D. Zhang Zhongguo Zhiwu Xuebao 1985, 27, 402-406.

Received 30 June 1998

